

2010 IM/EM Technology Symposium October 11-14, 2010

Additional Properties Studies of DNAN Based Melt-Pour Explosive Formulations

Pierre Pelletier, Daniel Lavigne, Isabelle Laroche, Frank Cantin, Lise Phillips

GENERAL DYNAMICS Ordnance and Tactical Systems–Canada

> Virgil Fung BAE SYSTEMS

Introduction and Background

- Insensitive High Explosive (IHE) formulations used in Insensitive Munitions (IM) were mainly cast-cured or pressed formulations until recently.
- New developments in melt-pour IHE and work that showed that they could also have good IM properties revived the interest for the type of explosive processing.
- Expertise with melt-pour explosive was acquired with TNT-based formulations at GD-OTS Canada for more than 60 years.
- We have acquired experience with DNAN based formulations for the past ten years first with ATK Thiokol developed PAX-21, PAX-25 and then with BAE OSI developed PAX-34 and PAX-33.
- The objective of this presentation is to present the tests performed on two dinitroanisole (DNAN) based formulations (OSX-7 now known as IMX-104 and OSX-8 now known as PAX-48) and their results obtained to complete results presented at the Tucson symposium.

Overview of Formulations Tested

IMX-104 (OSX-7): DNAN, NTO, RDX

> PAX-48 (OSX-8): DNAN, NTO, HMX

> Reference formulation:

• Composition B: 59.5% RDX, 39.5% TNT, 1.0% wax

> Components:

- DNAN: Dinitroanisole
- NTO: 3-nitro-1,2,3-triazol-5-one
- HMX: Octogen
- RDX: Hexogen

Previous work

Processing variables characterisation

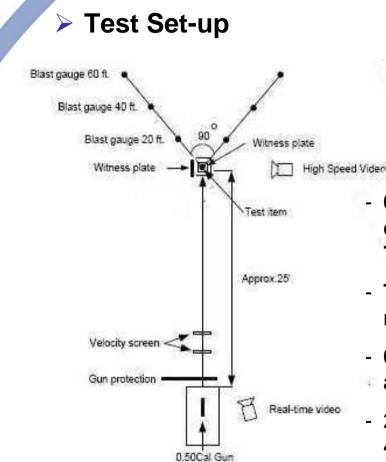
- Viscosity and solid particles settling.
- Cooling behaviour in straight cylinder
- > Filling of both 105mm M1 artillery and 81mm C70A2 mortar projectiles.
- Mechanical and physical properties
- > VCCT with intermediate heating rate (25°C/hr or 45° F/hr)

Detonation performances

- Detonation velocities and pressures obtained from computer calculations performed with LLNL Cheetah 5.0 thermochemical code following validation of the code with other explosives of the same type.
- Experimental measurements of detonation velocity and plate dents using a set-up similar to the one used by DRDC Valcartier
 - Tested sample: straight cylindrical sample (25.5 cm (10") long x 5.1 cm (2") diameter
 - Booster: Composition A5 pellet
 - Detonator: Dyno Nobel electric Super SP
 - Measurement of detonation velocity (VOD) from recording on three (3) ionization probes at 1.0 cm (0.4"), 6.1 cm (2.4") and 11.2 cm at (4.4") from bottom of sample; 5mm (0.2") from side wall
 - Dents measured on AISI 1018 plate (15 cm (6") x 15 cm (6") x 5.1 cm (2") thick).

Detonation performances

BKW equation of state and BKWC product library provided the best results for melt-pour explosives, including the older DNAN formulations PAX-21 and PAX-25.


Properties \ Formulations	IMX-104 (OSX-7)	PAX-48 (OSX-8)
Detonation velocity (Computed)	92.4%	91.2%
Detonation velocity (Experimental)	94.4%	92.6%
Detonation pressure (Computed)	82.8%	79.5%
Detonation pressure (Experimental)	81.5%	82.8%
Gamma CJ (Computed)	102.0%	101.9%
Gurney coefficient (2E) ^{1/2} (Computed)	90%	88%

Properties relative to composition B

Detonation performances

Comments:

- The experimental detonation velocities and pressures relative to composition B are within 3% of the values obtained with Cheetah 5.0 thermochemical code so the simulation results can be considered satisfactory.
- The computed Gurney coefficients of these formulations are about 90% of the composition B value. This is lower than what is normally indicated by other scientists based on fragmentation tests so it would be of interest to conduct cylinder tests to confirm them.

- 0.5 cal 36" Mann barrel mounted on a mobile carriage fitted with solenoid for remote firing set at 7.6 m (25') from the test item
- Test on bare filled 105mm M1 with inert PRF mounted on a table at 1.5m from the ground
- 0.5 cal APM2 cartridges fired at the longitudinal
 axis, 12.5cm (5") from the top of the driving band.
- 2 tests each on composition B, IMX-104 and PAX-48
- 6 pencil type blast gauges in two rows of three at
 6.1m (20'), 12.2m (40'), 18.3m (60') from test item
 © 2010 GENERAL DYNAMICS Ordnance and Tactical Systems-Canada Inc.

Results

- Composition B
- Reaction Type I or II
- Pressure records close to static detonation

© 2010 GENERAL DYNAMICS Ordnance and Tactical Systems–Canada Inc.

INNOVATE... FOR OUR FUTURE

Results

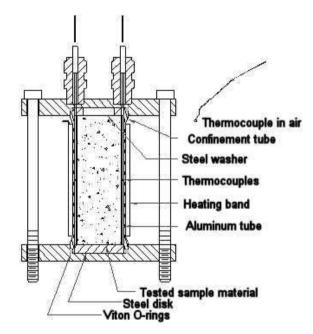
- IMX-104 (OSX-7)
- Reaction level V
- Limited reaction visible (high speed video)

© 2010 GENERAL DYNAMICS Ordnance and Tactical Systems–Canada Inc.

INNOVATE... FOR OUR FUTURE

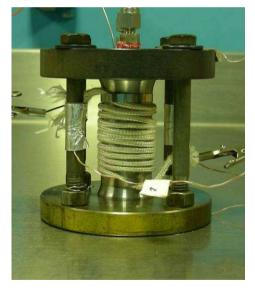
Results

- PAX-48 (OSX-8)
- Reaction level V
- Limited reaction visible (high speed video)



© 2010 GENERAL DYNAMICS Ordnance and Tactical Systems–Canada Inc.

INNOVATE... FOR OUR FUTURE


Variable Confinement Cook-off Test

Test set-up

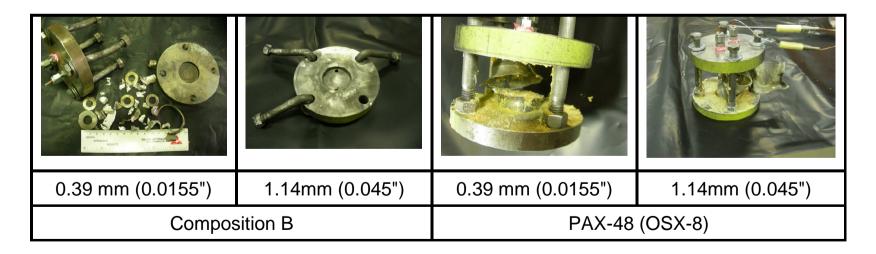
Sketch of general set-up

Slow/intermediate VCCT set-up

Fast VCCT set-up

© 2010 GENERAL DYNAMICS Ordnance and Tactical Systems–Canada Inc.

INNOVATE... FOR OUR FUTURE


IM Capabilities_BAE OSI_040210 (12)

Variable confinement cook-off tests

Results

Intermediate heating rate (25°C/hr or 45°F/hr)

Formulation	0.39mm (0.0155") confinement		1.14mm (0.045") confinement	
	Reaction T°	Reaction type	Reaction T°	Reaction type
IMX-104 (OSX-7)	182℃ (360℉)	V	179℃ (354 ° F)	V
PAX-48 (OSX-8)	189℃ (372℉)	V	190℃ (374 ° F)	V
Composition B	182℃ (360℉)	-	183℃ (361℉)	I

Variable confinement cook-off tests

Results

• Fast heating rate (Curve matching STANAG 4491)

Formulation	0.39mm (0.0155") confinement		1.14mm (0.045") confinement	
	Reaction T°	Reaction type	Reaction T°	Reaction type
IMX-104 (OSX-7)	245℃ (473℉)	V		
PAX-48 (OSX-8)				
Composition B	218-242℃ (424 - 468뚜)	111		

0.39 mm (0.0155")	1.14mm (0.045")	0.39 mm (0.0155")	1.14mm (0.045")
Composition B		IMX-104 (OSX-7)	

Summary

Two IM DNAN based melt-pour formulations, IMX-104 (OSX-7) and PAX-48 (OSX-8), were further studied in GD-OTS Canada in continuation of previous work.

- The experimental values of detonation velocities and pressures for IMX-104 and PAX-48 are close to the values obtained with Cheetah 5.0. Both formulations gave similar results with IMX-104 being slightly better.
- The detonation velocities of IMX-104 and PAX-48 are about 90% of the composition B values and the detonation pressures are about 80% of the composition B values. The Gurney coefficient of these formulations obtained from computations is about 90% of the composition B value.
- Bullet impact tests conducted with 0.5 cal APM2 bullet on bare 105mm M1 projectiles led to Type V reactions for both IMX-104 and PAX-48 compared to Type I for the composition B filled projectile used as the baseline.

Summary

- Intermediate heating rate results (25°C/hr (45°F/hr)) f rom variable confinement cook-off test (VCCT) performed with 0.39mm (0.0155") and 1.14mm (0.045") confinements produced respectively an explosion/partial detonation and a detonation for composition B. A burning reaction was obtained for both IMX-104 and PAX-48 at both confinement thicknesses.
- Fast heating rate VCCT (heating curve similar to STANAG 4491) results performed with 0.39mm (0.0155") confinement produced respectively an explosion for composition B and a burning reaction for both IMX-104.

Future work

Additional characterization studies: physical properties during ageing, Cylinder tests, LSGT, additional VCCT at other confinement thicknesses, additional IM tests on 105mm M1 projectiles

Tests on other DNAN based formulations like OSX-12